![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§2 曲线的曲率与挠率,弗雷奈公式
曲率描述曲线弯曲的程度.挠率描述曲线偏离平面的程度——挠曲的程度。这两个量对于描述曲线的形状来说,具有决定性的意义。
2.a几个引理
为了以下讨论方便,我们先介绍几个涉及向量值函数导数的引理.
引理1 对于可导的向量值函数r1(t)和r2(t),我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0066.jpg?sign=1739514946-sJpBOAiRMtEwtm4ubFhKY7McKqMdMa5y-0-44407dbda237384e2b29bede8f107f0b)
证明 用坐标分量表示(r1(t),r2(t)),然后再利用数值函数的求导法则.请读者自己补充证明的细节.□
引理2 向量值函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0067.jpg?sign=1739514946-rBr16W2dlBwv7MPOmL8uIN5dBbtj7m7o-0-46fa6887bef34406dd3f2db0f8866516)
保持定长的充分必要条件是:r'与互相垂直,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0068.jpg?sign=1739514946-m8hgMeEA6zzf1RHcBJ4ktZYu7lJ5m1jN-0-d3984cade151946e29645bab0aae06e5)
证明 我们约定记r2(t)=(r(t),r(t)。显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0069.jpg?sign=1739514946-mJibvcQn5uXdGAKRyr0tJ8JWJ538kdRS-0-43c9947585728642045bdf8aa6f78f54)
根据引理1,又有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0070.jpg?sign=1739514946-3ao5FbUDjv6AJIm0xBetDU55aatAXLk0-0-fbcf0b389d1898b2302863f8c72539b5)
由此就可得出所要证明的结论.□
引理3 设是单位长向量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0071.jpg?sign=1739514946-G6gXEhyeSveCQqFAC8YZKh7uYRrTAAVc-0-11c85c7966057a304bbdb019b0e39f01)
则r'(t)在与r(t)正交的方向上,它的模||r'(s)||表示向量r(t)转动的角度相对于参数t的变化率.
证明 我们用表示从向量r(t)到向量r(t+△t)的转角(图14-1),则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0072.jpg?sign=1739514946-gaGsHYEc3cbNpjWAMdPcHnWwKV4W3oxW-0-c54bfb3052459fa088a310c695e395b3)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0073.jpg?sign=1739514946-kgzwvA3MQWbz0EvH1zcTeUKKNEyJpgud-0-b0653c60db8dd767198f4dc7fb54ad86)
图14-1
于是有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0074.jpg?sign=1739514946-Rk4L4roM2q2iWmWt1saDbjXG31nO7x5L-0-f2da6f5f0623b06a36a40abbd6047b66)
2.b自然参数,曲率
考查曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0075.jpg?sign=1739514946-CuTF23JqRLwWMDmVOvAFFbNk6SB7s7xb-0-b99f78e3fff3d5c7d3db45d24bb7fd88)
这里假设连续可微足够多次,并且满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0076.jpg?sign=1739514946-ZfcqJD7iTYpGaRQB3Vx9tYKPKTvUhUWM-0-9e4ce0f107e77f979e5211b1d7496514)
曲线(2.1)的弧长可按下式计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0077.jpg?sign=1739514946-bReBELvpWk8NDcOH5CCm8md6OVFyxZEe-0-f98aa035bf5e31e072e9285098dd5c49)
这里的t0是量测起始点的参数值.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0078.jpg?sign=1739514946-JJjEY3NF4cCdBxSXItkrN4oDPX3TlixG-0-a69c90856b7c5ebcbafc579ea102d88b)
根据反函数定理,可以断定t是s的连续可微足够多次的函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0079.jpg?sign=1739514946-O34qnGEcRYju38MMbI7RzrVusaC6S5PW-0-94c416ffc41c17e5d38dad81748fe6ac)
于是,可以用弧长作为曲线的参数,把(2.1)式改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0080.jpg?sign=1739514946-aRCqcHPzO0AFYhLZ629kb9wZtYgN19GT-0-3cbc7be51332a30dd7c17c1cfd1d6c26)
以下,我们把弧长参数s叫做自然参数.为避免记号繁琐,对于不致于混淆的情形,就简单地把(2.3)式写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0081.jpg?sign=1739514946-Po0OU4o8MD1Jnl2bFnChjPRDhmZzfKbC-0-ad96e0f7a35543b7f52f38152368971d)
在本章中,我们约定用圆黑点“·”表示对弧长参数求导.于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0082.jpg?sign=1739514946-aiRgmR57Bk22x6cRqybXncCvynPx8j7N-0-221f471031eec87dd591297c07fcb15b)
由此得知,r是一个单位长向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0083.jpg?sign=1739514946-xWAwrDmrHmXw8jqAWzfX6cec3njOBWve-0-b2ad309bde505a44435cc3780bac3f1c)
于是,r(s)是曲线(2.4)在r(s)处的单位长切向量.我们约定用记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0084.jpg?sign=1739514946-5dN7a8Q5vHEOHkBnfvKvQl7dxyq1dXa3-0-df5077d54bd64271d8e878e6b527c43b)
表示这单位长切向量。
请注意,为了讨论方便,我们约定把切向量看成自由向量,因而可以把各切向量的起点都移到坐标原点.读者以后逐渐能体会到这种看法的好处.
将T(S)=再对s求导,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0086.jpg?sign=1739514946-VfggGuAS03ZaDjQuB8y5wIdIKipIPOsW-0-5a8c8880858fe7172445d06f6b4c8ab9)
既然T(s)=是单位长切向量,那么向量
就在与T(S)正交的方向上,并且
表示切向量T(S)对弧长S的转动速率
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0090.jpg?sign=1739514946-rPDj3AGdmjAiKi1cntr7BnDYVzloTZ1Q-0-620f1cde368d694fbdedd45613401c30)
——请参看图14-2.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0091.jpg?sign=1739514946-eIfIUuSg3sZTvlWd8fOAj6yVbqqCGMON-0-5f454d174d040c4bae50ac39b4f31324)
图14-2
我们把切向量T(s)相对于弧长s的转动速率叫做曲线(2.4)在给定点的曲率,并把它记为k(s)于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0093.jpg?sign=1739514946-V0pdlh9ZlVaj94RHOAB72ZjheUYZZUWF-0-a500f16fcc9f29ece695ff8003363514)
曲率K(s)的倒数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0094.jpg?sign=1739514946-hpE6RpgFWIgd2YUpmasedBt8uE0hliNS-0-a6880e34b4d4a4e800f4ea0dc2458eb1)
被称为曲率半径。与κ(S)一样,曲率半径ρ(S)也表示曲线弯曲的程度。只不过ρ(S)越小表示曲线弯曲得越厉害。对于κ(s)=0的情形,我们约定ρ(S)=+∞。
例1 考查圆周的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0095.jpg?sign=1739514946-GsGHYidCuRefmT6s8KSCXzjpe13Cbyom-0-8c276ca9215de5856021384b6c4969a3)
换成弧长参数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0096.jpg?sign=1739514946-x8EmSWpOS6oOp3peOhuA7KYJzwHAchET-0-3cd10627f5b30a8072e673affc76be6c)
圆周的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0097.jpg?sign=1739514946-n9BMtKbcamdj27u09snVFaGYJHIvV3CO-0-f138d1ffd3d8b6c8db68feda374927a3)
利用以弧长为参数的方程,容易求得曲率k和曲率半径p:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0098.jpg?sign=1739514946-kXbbkNZbg7oRoQkllnu9JrCcEBE89g8o-0-88d412bf9f02cf48443e548e4e837d1b)
例2 某段曲线为直线段的充分必要条件是:在这段曲线上曲率处处为0,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0099.jpg?sign=1739514946-BbNvDiexRQtkVhXue5P4PIo1xHK9sezi-0-ee645e89a41564d7a91ccda02e21235e)
证明 如果某段曲线为直线段,那么这段曲线以弧长为参数的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0100.jpg?sign=1739514946-5F1cg9rhDbZQxm09UH2do2d49f40aRyv-0-c15e3cbcdd74f075db2a439deb055d87)
这里e是长度为1的常向量.将上面的方程微分两次就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0101.jpg?sign=1739514946-WXTReCypdvg54LncwvY7YllNpwuFBXyY-0-721fd8894bfdc7ba52ee3ef6e3daf8a9)
因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0102.jpg?sign=1739514946-rbtBYBRddIFX4W0M7LmvAp4KkaawqPVg-0-e8e388c09c68c431fca762a9de49be82)
这证明了条件的必要性.
再来证明条件的充分性.假设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0103.jpg?sign=1739514946-TJlsYqWXN0aenDXE6LItNSZ5JtdY6hcd-0-45108b9c7e151286692e7792b3381f83)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0104.jpg?sign=1739514946-wEnPUnz2WwhDCgNBcKtkTV63noak6vzK-0-1745a6a655f998928c48f286287f2845)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0105.jpg?sign=1739514946-SzjUGRk6gnQzOY7PkIJuyC8KwFc4vWuW-0-1019dc7a65a67006245eb278064b8f15)
由此又得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0106.jpg?sign=1739514946-WgGMRTXz9RJmFCQvwqR8LtT51YpAedIx-0-7fe8f9ddabb988ba2e435cdd551740ca)
这证明了条件的充分性.□
2.C弗雷奈标架,挠率
曲线上曲率等于0的点被称为平直点.我们来考查不含平直点的一段曲线.在这段曲线上
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0107.jpg?sign=1739514946-nH0jNg2rd2UyRZgYthuHdjorevc4Nqxw-0-13789e35fe5b53ef2560a77bc6efc9f0)
所以可以定义
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0108.jpg?sign=1739514946-5beZF0hiQqcOIT0n4rvbUQVl9JUjUmrS-0-89ba5b03fbd9cda5a4cd1d2e7b0e9a2a)
这是正交于T(s)的一个单位长向量,我们把它叫做曲线在给定点的主法线向量.利用切向量T(s)和主法线向量N(S),又可作出第三个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0109.jpg?sign=1739514946-3YKmJjfmPiKDdabBXU1Eup5GBEslOcsc-0-0946f6c8135e1fa05affeb16f603c1ac)
因为T(s)与N(s)是互相正交的单位向量,所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0110.jpg?sign=1739514946-Ye1d15TjU01ZjKCspK7NuZ8OVLD8iNgo-0-6cb60af33656f2969272c643d24877bf)
由此可知:B(s)是与T(s)和N(S)都正交的单位向量.我们把B(s)叫做曲线在给定点的副法线向量.在曲线上的给定点,由切向量T(s)与主法线向量N(s)决定的平面,叫做曲线在这点的密切平面;由切向量T(s)与副法线向量B(s)决定的平面,叫做曲线在这点的从切平面;由主法线向量N(s)与副法线向量决定的平面,叫做曲线在这点的法平面.
这样,在曲线的每一个非平直点,我们建立了一个规范正交标架{T(s),N(s),B(s)}这标架被称为弗雷奈(Frenet)标架.由这标架决定的三面形被称为基本三面形.
当点沿着曲线运动时,弗雷奈标架也随着运动(像这样的标架被称为活动标架).我们需要考查弗雷奈标架运动的状况.先证明一个引理.
引理4 设e1(t),e2(t),e3(t)是向量值函数,对每一参数值t它们都组成一个规范正交标架{e1(t),e2(t),e3(t)}.如果将
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0111.jpg?sign=1739514946-e9W7aOwnC8NqYNEbcqns4KaFOjfGdxVS-0-1aad305ee521586ba31d40998f35f4e8)
按这标架展开
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0112.jpg?sign=1739514946-K2L6tQqMln6peTXBgBJ7YM4fpOgYF2I2-0-e8b01bceb29232692ef18986da49015a)
那么展开的系数应是反对称的,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0113.jpg?sign=1739514946-GH2NYNpztxYRTjwTee6i4Vxo7Fs3I1Na-0-170c6609ed64315c36abdac059845442)
由此可知
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0114.jpg?sign=1739514946-w2ir0PYenaiCEqxGRMr9Lgs1nGcrNouA-0-122a96b76abafeca4444e4969f2035a9)
证明 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0115.jpg?sign=1739514946-NXf0JRdAejONRv8z0VOpIkqTEqyHIVur-0-2fdd26ecf514c8a255c94f65f872eb7a)
将这式对t求导得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0116.jpg?sign=1739514946-nqplJiYeGlySZAdSWSIA9JqEYOZmc9Zz-0-d07cd1f8a6503d4d1074170a463c0c1f)
这就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0117.jpg?sign=1739514946-Y7YKUrjEJIP52ErKo7H9QJTmyTh0KnSx-0-3e1b2a8a02e67e228facb4a05d613735)
定理 对于曲线的弗雷奈标架
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0118.jpg?sign=1739514946-S5DQNVucnECMzyevW7nvYOrtBnBO6BdC-0-4e4f3d0850a42842d7a212600e1e5416)
我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0119.jpg?sign=1739514946-8dcEz0vZdts3AArrh21PkRypblBU94hU-0-4829b28a3f15ae2791b4254295076303)
这里k=k(s)是曲线在给定点的曲率.
证明 对于标架{T(s),N(s),B(s)}用上面的引理就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0120.jpg?sign=1739514946-VlT49SzVpLQedlz0R0k7phbyPJ5HEWhk-0-3a2c7b9bf83e54c32938918d19671db5)
但我们知道
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0121.jpg?sign=1739514946-RcAfJY6olCe5xjal9S0psdp2lTMSFj0l-0-bc5d8b73f47891ea7c23c36653d42950)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0122.jpg?sign=1739514946-x0ZQ8zllmcm76VvQZe2YlznXjXybPZef-0-b9eb7650db0e03addb452e923475f24a)
我们记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0123.jpg?sign=1739514946-cH6P1siZohGL5Jm1JJeuekbFmhzTxC2J-0-2507404017cfe842043d5e411d99751d)
于是就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0124.jpg?sign=1739514946-mAWQUOHKR78hNLjAgwORAFetyFY4Pn3f-0-b1555d10da6f61262ef3100e4ad69f2e)
上面定理中所给出的公式被称为弗雷奈公式.该公式中的系数τ被称为曲线在给定点的挠率.下面,我们来说明挠率τ的几何意义.
引理5 设r(t)是一个n阶连续可微的向量值函数,则有以下的泰勒展式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0125.jpg?sign=1739514946-YinricwrOSALqDOP5W3KHht7ubLqEudk-0-a0410043fcc632463433b564f7087910)
其中的Rn+1(t)满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0126.jpg?sign=1739514946-GW2it3crg8NlF75NNSUnAJRDpRdl5yS7-0-96a98a1543206f261d071fb701eedd17)
我们还可以把r(t)的泰勒展式写成如下形式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0127.jpg?sign=1739514946-ZvPfUagzG03kFiJATiVGtdbkICbDtYI7-0-1f18995b30494da83f11aaa7b04b533f)
这里的小o余项表示满足条件(2.5)的向量值函数Rn+1(t).
证明 设r(t)=x(t)i+y(t)j+z(t)k.将r(t)的各分量按照带拉格朗日余项的泰勒公式展开就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0128.jpg?sign=1739514946-gAtpTAmHVUrMar01PJX35lUmjIItPdll-0-64f463e2bb8b6fff1f48a23775e1a1cf)
若记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0129.jpg?sign=1739514946-v8P79bSVpCLyCy0JfKXPIMoYfsQMnXbG-0-6add9531bcd55bb826de78bfee6ae4b8)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0130.jpg?sign=1739514946-yZxDirZBcJsX58018ThrssjOQpsj8l94-0-4f52d5b703309ea018a5aa70ae9d501f)
利用x(n),y(n)和z(n)(t)的连续性就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0131.jpg?sign=1739514946-Pr9p09dVikyOWTyetvh4fALFUJhCWJmC-0-6da5dfdadf2e18ab428246de433ed0b4)
对于用自然参数表示的曲线r=r(s),利用上面的引理可以得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0132.jpg?sign=1739514946-HgH4rIVtjGWnL2zZGwsDTTLWIgpa8uo4-0-f1aad62f886abe2caae475018a48fdee)
按照定义,切向量T(s0)与主法线向量N(s0)张成曲线在给定点的密切平面Ⅱ0.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0133.jpg?sign=1739514946-jL3MzZXqUwXVs5I97dN0iQEkp9ZycrSP-0-0e64a6bd6b5da437f721659e2aebc077)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0134.jpg?sign=1739514946-7HOv0eX7TWVGaFSxCnbWaEwJ2Fp3PqH2-0-61616c555dbb4561e03558bffa522621)
是在密切平面Ⅱ0上的点.我们看到,在给定点邻近,曲线离密切平面Ⅱ0的距离是高于二阶的无穷小量.在这个意义上,我们说:密切平面Ⅱ0是在给定点与曲线贴合得最紧密的一张平面.在曲线上任何一点,副法线向量是该点密切平面的法线,而这样,我们了解到挠率τ的几何意义:|τ|表示副法线向量B相对于弧长的转动速率,也就是密切平面相对于弧长的转动速率.因此,τ表示了曲线挠曲的程度(偏离平面曲线的程度).
例3 设某段曲线r=r(s)上没有平直点,则这段曲线为平面曲线的充分必要条件是:在这段曲线上挠率处处为0,即τ=0.
证明 先证条件的必要性.设某段曲线r=r(s)在平面Ⅱ上,则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0136.jpg?sign=1739514946-kpxLaOUixyU9ShVtv2EhuIz6HnUwGDvL-0-405d3013a5d100ebef8f220be87fc85c)
都在这平面上,于是B=T×N是常向量(垂直于平面Ⅱ的单位向量),因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0137.jpg?sign=1739514946-usemZKmKXczOzaCZQdo2fc0K03FAeSRs-0-d3b970218ccc00e2c732ef2a00b0652f)
再来证明条件的充分性.设挠率则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0138.jpg?sign=1739514946-c2jqLDO1KSl3YYhnRJ4Nlq6b6ajPt48T-0-e71d25d876aca122e1147c836f59edca)
因而B是一个常向量.考查函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0139.jpg?sign=1739514946-4AJiX2EMMqjflLK09TQ925dAUX8P0riT-0-9463fe72e08f3c567e53fbf45e5e0623)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0140.jpg?sign=1739514946-OCb3azkky4IhZaC6a9Zl1243KaxQv4s9-0-83be3155105dc5bec40f7bc5a834ef8a)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0141.jpg?sign=1739514946-ORP1YfWkfpQUKugdP9qZtbiTjEXlIEfg-0-d22d3c6899f598c8a02620f2e0acf1b2)
我们看到:曲线r=r(s)在平面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0142.jpg?sign=1739514946-lk0byzjENrbcLLUM1qE4NeUFoSumRTvh-0-5f9bc26282a0cd14d897d33e9c36fba3)
之上.□
推论对于平面曲线r=r(s),弗雷奈公式可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0143.jpg?sign=1739514946-2p8j16n1bry1OOnLC0FWJ1faqGrlluuU-0-7eda9cd6dcca6223fa91c1c4833afa74)
2.d曲率与挠率的计算公式
如果曲线方程以弧长作为参数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0144.jpg?sign=1739514946-MRdWFWYf8hh9FvK6zpwJVWakcvg7Z6hc-0-cb240caf72b76d3b5ba0dd0ab2fe3b50)
那么曲率与挠率的计算都比较简单.将r(s)对弧长参数s求导并利用弗雷奈公式整理求导的结果,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0145.jpg?sign=1739514946-qaUd5kDhcSaxu8vDa9yWGbLhXqB0eaar-0-be0dc50cf6d8c674fd9e07a5518d5323)
由此可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0146.jpg?sign=1739514946-Na27cqk5IOyG1ci1sRCK3NZU07x2FVHA-0-0104836bb32face85baaf7890ba5ce6f)
在这里,我们用记号(u,v,w)表示向量u,v和w的混合积:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0147.jpg?sign=1739514946-8eOCBZcNUGwkg0c1K013AixYSHUjwIM1-0-36cee3cec26c33f6cfe68829734d6a15)
对于更一般的参数,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0148.jpg?sign=1739514946-ExrbY3zqLoCTN2L8iVifXVMNlt18IVVc-0-ff99fdc235cae11c6c4deea2b9e9048b)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0149.jpg?sign=1739514946-9TZv402LUaqdMFbKZfHjvpbNdNzQjL2n-0-06cf879fcbe1ebdf9c29020df5b9fc1f)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0150.jpg?sign=1739514946-JrxZwdoKRZWh6O6cvSMIWK9G0TulhP24-0-7973a390849e5f3c01c9a1a14091d975)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0151.jpg?sign=1739514946-FE6OGJ6igpbwPDhMmURbgFrQkbeOwyi6-0-4fe3a230c8314863f2cbe88542ca9d4e)
于是,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0152.jpg?sign=1739514946-ty8HfH2ciToUwRnEAZCVhBefhUiYLZEw-0-ace801e415f72818970cac0080015915)
由此得到一般参数曲线的曲率与挠率的计算公式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0153.jpg?sign=1739514946-EYCUf89dUn38vgRYK3lFoAeeLraZOctz-0-f4f9890277ab76a046780dc5d71325b9)
2.e关于曲线运动的讨论
最后,我们利用本节得到的结果,考查质点的曲线运动.设运动质点的轨迹是曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0154.jpg?sign=1739514946-cqd9HlZVe8SLNtaJTUCE9uq5FWcwrSOL-0-720cdfd429de54f4aa58b89789a5f290)
这里的参数t是时间.将r(t)对时间参数t求导,就可求得运动的速度与加速度.运动的速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0155.jpg?sign=1739514946-xy23dHO4dGALIE4gVSXA58mO110vS02X-0-a26945054976624b5daa922810747f59)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0156.jpg?sign=1739514946-GyGILtZmzYfSC4rifjOaZcrCZ3llUZsI-0-c81b1353213aaf373fa31c9930328b1a)
是速度的数值——路程对时间的导数.运动的加速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0157.jpg?sign=1739514946-04tvDiFMl4QvYT07iljfSMnfCGSqMoZg-0-8f9c503eb9d1f1807dfc9396ea874080)
这里k是运动轨迹的曲率ρ是曲率半径.
我们看到,运动的速度沿着轨迹曲线的切线方向,其数值等于ds/dt;运动的加速度分解为两个分量一切向加速度与法向加速度.切向加速度沿运动轨迹的切线方向,其数值为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0158.jpg?sign=1739514946-ZKVJhoCmf5EOEhN4O2SZKACl1tbWud82-0-2f7a98c9e2bb2a21ea1ddece40511cb7)
法向加速度沿运动轨迹的主法线方向,其数值与速度的平方成正比,与曲率半径成反比:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0159.jpg?sign=1739514946-FiWTBZONOZf3dqCvnwoXg7fnh6nl9uq1-0-26b9a92d1536522342a76ae3f8ee3b7c)