![复旦大学数学系《数学分析》(第3版)(上册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/631/27032631/b_27032631.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.3 名校考研真题详解
一、选择题
是( )。[同济大学研]
A.右界函数
B.单调函数
C.周期函数
D.偶函数
【答案】D
【解析】
二、解答题
1.证明下列不等式:[浙江师范大学2006研]
证明:因为|a+b|≤|a|+|b|,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image370.jpg?sign=1738871432-gIQS0rdQjDRLCGBh3yKC9749hvyH1e78-0-cbffdbeb9e1f572ad7f1fbdac0ad0897)
2.设,当y=1时,z=x,求f(x)和z。[西安交通大学研]
解:依题意令
,则
,
所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image375.jpg?sign=1738871432-URNZJYXv5rsRmgCxiXRpcOMeBIhxZhCC-0-61508ac67e16f0b53ae6dd1286e3e260)
3.设求f(x)的表达式。[北京大学研]
解:令t=lnx,则,所以
4.设,求f(x)的定义域和
[中国人民大学研]
解:由,解得
,从而f(x)的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image385.jpg?sign=1738871432-xDZvFqv51grkf0M6fHUvWJxjAms1NhAS-0-51c891f00f5bf42e09000f21a0571c20)
5.求函数的定义域和值域.[华东师范大学研]
解:由可得
.解得函数的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image389.jpg?sign=1738871432-PueRPGTkp2VsmO1Ylmn992832VlXwmAu-0-715a1ef938a9f18f049aa6affa617da3)
又因为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image390.jpg?sign=1738871432-RfAd05L8vJi5lOVzLgCMY8othM8RyUCx-0-33d760338bc6a431261fea41bfb243a6)
所以函数的值域:
6.已知的定义域为
,求
的定义域.[武汉大学研]
解:,即f(x)的定义域为
.
再由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image397.jpg?sign=1738871432-IFRnEHi2uWXYzr1We0PuUqw8nt7K3c2O-0-a2579346e52c3b3313f60016774a91e0)
解得,∴所求定义域为
7.设函数f(x)在(-∞,+∞)上是奇函数,f(1)=a且对任何x值均有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image400.jpg?sign=1738871432-Sc0rZeaUWTBNsTFRFb763vpNR593r56N-0-4abd063e65ccb2d3fcbcd26bbd7f8a46)
(1)试用a表示f(2)与f(5);
(2)问a取什么值时,f(x)是以2为周期的周期函数.[清华大学研]
解:(1)
在①式中,令x=-1.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image402.jpg?sign=1738871432-llE765hIVQRq1KwNJAsmXNk5EntWzg65-0-e60b5ec7338eff9abe15924c0515c25b)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image403.jpg?sign=1738871432-CRyyKDm8vvZqMyjFTGFBvOvI7PozNmwE-0-3bcc0e8217c5ed9246f32a2a60463489)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image404.jpg?sign=1738871432-Wdf9719vIAKLDziLYDEjCDkXwpmK8ryv-0-325246c6c3cdf430dea053d3b7834869)
(2)由①式知当且仅当f(2)=0,即a=0时,f(x)是以2为周期的周期函数.
8.已知,设
.[南京邮电大学研]
解:令,可用数学归纳法证明
①
当n=1时,显然①式成立.
假设当n=k时,①式成立.
当n=k+1时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image410.jpg?sign=1738871432-gnMMplQlAmR6Fu6oHHoaPJLYWxRnaJ6k-0-e91407987737ac93aec1ce5686b624a6)
即对n=k+1,①式也成立。命题得证.
9.已知.求
.[北京理工大学研]
解:由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image413.jpg?sign=1738871432-kZYT2Dg1Gir5GDP8xvmiiScnrsYiNyoR-0-bdd79dfbd2138d3f4ea55a443c90fa61)
解得,互换x,y得
当
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image417.jpg?sign=1738871432-VsdVYFyjlBG3PDsSq3j9FcyTeLIo1lee-0-8185edb5c9c08be2e521025d704880c7)
10.设,试验证
,并求
.[华中科技大学研]
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image421.jpg?sign=1738871432-HKKNveiq8fANKiDie5jPbluHUeOtqfYX-0-f9e61b2fe692486004c6e61fd1631ee8)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image422.jpg?sign=1738871432-dSVhaSnYd7Wc1DpRwQaLoERwO0DIZKHz-0-3694d2e0f840945ac5f0203f6eaaa532)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image423.jpg?sign=1738871432-IZBUnqHGdstSrsX9BuENA9Bg9eFYXZqN-0-b4f381c32df5d7fa5135dab460ab2ecb)