![车用同步电机噪声与振动](https://wfqqreader-1252317822.image.myqcloud.com/cover/853/42637853/b_42637853.jpg)
2.2 连续系统的振动
2.2.1 薄板的振动
弹性薄板是二维弹性体,可以承受弯矩。设薄板的中性面在变形前为平面。建立(x,y,z)坐标系,(x,y)坐标面与变形前的中性面重合,z轴垂直向下(见图2.1)。薄板受到沿z轴的分布力f(x,y,t)作用。在中性面上任意点处取长宽分别为dx和dy的矩形微元体。将与x轴和y轴正交的横截面分别记为Sx和Sy,假设弯曲变形后截面仍保持平面。将板的中性面法线视为截面Sx和Sy的交线,则弯曲变形后必保持直线。弯曲变形后,中性面上各点产生沿z轴的挠度w(x,y,t),且引起截面Sx和Sy的偏转。设截面Sx绕y轴的偏角为θx,截面Sy绕x轴的偏角为θy。在小挠度的前提下,偏角θx和θy可用挠度w(x,y,t)对x轴和y轴的变化率代替:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_07.jpg?sign=1739523461-3sxoVrbtTpTHaKJ0UWoo6Y1ExCyXKyta-0-9fa191ba15947afa455e6586867c17db)
图2.1 弹性薄板
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_08.jpg?sign=1739523461-AbPqiiEKRqQGkSXMIxknvU1SMga8P1vB-0-a94e08d5f6eeb415018074e058e1fbec)
则截面上坐标为z的任意点产生沿x轴的弹性位移u和沿y轴的弹性位移v分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_09.jpg?sign=1739523461-PDZMRFZ76O9LFw2adMnGAZVI9aee9Q8i-0-78bfbad02a21b6078826045c0f4fb9e0)
位移u和v对x轴和y轴的变化率导致微元体沿x轴和y轴的正应变εx和εy:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_01.jpg?sign=1739523461-ZMM84YJpmp6P9H5QFWYVpPZTOAOGJuMY-0-27faf3f359cd7f95ffd3f14ba5ce8b3f)
除正应变以外,位移u对y轴的变化率和位移v对x轴的变化率导致微元体在(x,y)平面内的切应变γxy为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_02.jpg?sign=1739523461-RiifoXJ4MKkOwwco7hpMI2UFAqF3keE4-0-923a6248a1cbd955eca7298857534227)
代入广义胡克定律计算正应力和切应力:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_03.jpg?sign=1739523461-10HkbdLcaXAHNW2UqQuOlFzGzkvq8g3N-0-7a2150661fc52ca30c347e0cfe1f549a)
σx、σy、τxy在截面Sx和Sy上的积分为零。设、
分别为截面Sx和Sy上沿z轴单位长度的剪力,板的厚度为h,密度为ρ。根据达朗贝尔原理,考虑微元体的惯性力,列出微元体沿z方向的力平衡方程(见图2.2):
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_06.jpg?sign=1739523461-ydaOen4flFu6abKhKHP24u2Kn37KLxko-0-0f48b0c7f95334cd099cf93cd1612a80)
计算截面Sx的单位长度上作用的绕y轴的弯矩My和绕x轴的转矩Myx,以及截面Sy的单位长度上作用的绕x轴的弯矩Mx和绕y轴的转矩Mxy,得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_07.jpg?sign=1739523461-q2QZS4jvCSFtxnz0XPq86JkferlTNrvZ-0-6229fe5ce2bbb062f44cb893b588ae2b)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_08.jpg?sign=1739523461-f9fqwKH4k83oenwNLA65JMLorjJYNno7-0-bfdff4cdf20e769b74dc48793b2fd58b)
图2.2 微元体沿z方向的力平衡
式中,D为板的抗弯刚度:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_09.jpg?sign=1739523461-6wcVzT7y9vj9uGjQLOloluJTSV4EUY5M-0-2a5d533204f23645ba23a321e29c31b7)
忽略截面转动的惯性力矩,列写微元体绕y轴的力矩平衡条件(见图2.3):
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_10.jpg?sign=1739523461-iA4J8hnWmK6lepjNkB1ll0dBKAp7cIAv-0-bd59800feea9e819c9ed3c2e446ad714)
略去dx、dy的三次项,得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_11.jpg?sign=1739523461-qDDKFSPZazlESwqq4a4X1cUxslzBBH3a-0-636b2d4e7cd90797abe5dc53c80a3371)
与此类似,从微元体绕x轴的力矩平衡条件导出(见图2.4)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_12.jpg?sign=1739523461-sBPc51wmsih9oDdj1u0G9bYpr0TubO5W-0-73b13c12be6622fc7e306b752b6c3e7c)
将式(2-62)、式(2-63)代入式(2-58),得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_13.jpg?sign=1739523461-AhVDseFwBgUv1DHkuqwnEFSJ2TNeSlIQ-0-91a85b8a1049cd4cefdaf2968c0f30a3)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_01.jpg?sign=1739523461-7DOVn0XBlZz3yvZEdDJF5UPS9JsXKLrN-0-3b9236d274eac8c05ad97b7306eecc2d)
图2.3 微元体绕y轴的力矩平衡
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_02.jpg?sign=1739523461-JLyhQ4mZifYDLgFyK6s1hqL5KLO6DpKh-0-9bc6a0adaa4f87a292bf64a989bcf202)
图2.4 微元体绕x轴的力矩平衡
将式(2-59)代入后,利用二重拉普拉斯算子得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_03.jpg?sign=1739523461-4oYMoFXMrkO0IHtXP4Zoye0EUvRDdE0M-0-71102f66b68cd4d359d9819f8c2ebfcb)
导出薄板的振动方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_04.jpg?sign=1739523461-eMBJ2lnG61HkUS5ZF9HWqfuegx4Q6KQ4-0-8c25431b73029ce715252bef88150156)
2.2.2 圆环的振动
本节研究的圆环,假定为等截面的而且截面尺寸和环中心线半径相比要小得多,同时截面在振动过程中仍然保持平面。选择圆柱坐标系Rθz,圆环在振动中除了扩张振动之外,还有扭转振动,如图2.5所示。设其绕轴线的转角为ψ,于是截面上各点有三个方向的位移,设其沿R、θ、z方向的位移为u、v、w。现以轴线(截面中心线)上各点的位移为u、v、w,绕轴线的转角为ψ,略去高阶微量,则环上任意点a(R,θ,z)的位移将为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_05.jpg?sign=1739523461-28fr7wSH7B7frPNsBCASsZMDTyRFyb1e-0-12eac9e27496cd2df26567543ce7bbd6)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_06.jpg?sign=1739523461-FjaSNAb7fFQN7JnlhBaJRR3jWjnSU8UC-0-99706f1e9c313c18b9ad141e983a34a3)
图2.5 圆环的振动
根据小变形情况下圆柱坐标系中的柯西方程,截面上各点应变和应力分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_01.jpg?sign=1739523461-t1u0bAR3Y0TctyepjC15WOrHewPeePoi-0-f444d1b055d903595340aab278d52e87)
上述关于剪切变形只限于平面假设,因此只能适用于圆截面的圆环,以下只讨论圆截面的圆环。圆环的势能表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_02.jpg?sign=1739523461-PZ5B6Q2WZajZfjKYeLFCPSk1rZfgtglH-0-173e00c9b227f885d517335aed19b931)
式中,A为圆环截面积;Jz、Jr分别为截面对于通过形心而分别平行于z轴和R轴的轴线的惯性矩;JP为圆截面的极惯性矩。
动能表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_03.jpg?sign=1739523461-OHXrJ8oSKJFncKAOByv9OPElZHz6at5B-0-371b56f45e213b5be92fec4dd857f543)
式中,、
、
分别为圆环上任意一点a(R,θ,z)在u、v、w三个方向上的速度,且
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_07.jpg?sign=1739523461-Qo7IeBXC4w4BTHWkwJT7bYNzGylFHpbW-0-cbbbc0a50d766ec51006fc6bd8b581e8)
在动能和势能表达式中可以发现,u、v和w、ψ之间不发生耦合,因此可将圆环振动分解为环面内的振动和环面外的振动。
1.环面内的振动
变分方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_08.jpg?sign=1739523461-matVBWgqCqR9iAmyZN7f2ZJjcpbkVtNJ-0-f7fb27bd2c6937340b8574e74edf950c)
讨论环面内的振动时,在动能和势能表达式中令w=ψ=0,然后将其代入变分方程式(2-72),经过变分运算,并考虑δu、δv的任意性,略去小量得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_09.jpg?sign=1739523461-brWPxmNdIvTBNUXwgMLMJ3NxmPmnmfNN-0-1d9bd5a9ab9cf456de6862406228e01c)
此方程包括圆环在环面内的伸缩和弯曲振动,由于Jz=Ar2,要使弯曲振动的有关项和伸缩振动的有关项同量级,则由εθ=+
,可得u=-
。根据这个关系,假设
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_13.jpg?sign=1739523461-6sGLjXPUXvXQvPtRcNWsYqxHKq0uFERC-0-c2cc2976d869ba88b32727b394675dc4)
将式(2-74)代入式(2-73),可求得圆环在环平面内弯曲振动频率为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_01.jpg?sign=1739523461-zurTHZbRWDeapoCJodbc8JN8EKoWVjfw-0-2f9b3c9cee2975711deceeede433ce06)
当n=0时,p0=0,u0=0,v0=B0,是圆环的刚体转动。
当n=1时,p1=0,u=-A1cosθ+B1sinθ,v=A1sinθ+B1cosθ,是圆环的刚体平动。
考虑到Jz=Ar2,将式(2-73)进一步简化,便得到圆环的伸缩振动方程:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_02.jpg?sign=1739523461-bWvfcUovd9X8DVicMiXB7zPm6SbPTh3o-0-9c3a699dc06ec232d21401356f9406ba)
此时设圆环做波数为n的伸缩振动的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_03.jpg?sign=1739523461-TBnyxnOtOhDSWAa31LmGkDF5M00wqEt7-0-cfb6a4bdda353f57190205c25fc11167)
将式(2-77)代入式(2-76)可解得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_04.jpg?sign=1739523461-NX5WgPUcX75qY9RDNypuAQUL4u3O4Ah1-0-f5d87e4e7da8540f22adce01ee31f0cf)
当n=0时,圆环切向位移为零,只做均匀的径向振动。
2.圆环的扭转振动和面外弯曲振动
在动能及势能表达式中令u=v=0,然后代入变分方程式(2-72)中,经过变分运算,并考虑δw和δψ,得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_05.jpg?sign=1739523461-KNAo3icEliEgxKXs9TiFEXhEyLY2AiR0-0-425a29d825906b4452092455cb365c5e)
以上两个方程彼此之间发生耦合,即面内弯曲振动与扭转振动是互相耦合的,现设其振动时的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_06.jpg?sign=1739523461-mqZM6rllNpo6C4a61Dzb5Q5Yqzp2eBCK-0-0557dca975d517c3e0bfe10e502df25e)
将式(2-80)代入式(2-79),并考虑到Jz=Ar2,得到频率方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_07.jpg?sign=1739523461-8zEdMYiYc007jF8XSBUwQgoNu2TK0qbx-0-08638c01fc740ac2881e49e35e1b969f)
所以有
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_08.jpg?sign=1739523461-pUwgn2ydYQcBIPHxTAiqXQilT7kNxerM-0-03f82427743b0414a0071e2299ef2f0c)
式(2-82)中,由于根号中的后一项比前一项小得多,所以根号取正值或取负值时,频率值的差值较大。频率中较高的一类是常说的扭转振动,低的一类是弯曲振动。对于扭转振动,其频率值为根号取正值,即
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_09.jpg?sign=1739523461-qOVzqJJQOHd6Qk53qNER4UaZ55gOfGUm-0-ebc000dc2cf78ef4237e303abd6e1364)
当n=0时,有
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_01.jpg?sign=1739523461-K9D6rxf3D00cYr3NRx3OQ5MR7dH7I2xF-0-d403a0f163331b47faead018ce2b6331)
相应的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_02.jpg?sign=1739523461-46ONquBO96TNqEPaqY6YFUUK1BaEHACT-0-4473165a97e84f6140b4bc4e0da87c67)
和伸缩振动频率相比,扭转振动的基频低于伸缩振动的基频。
对于弯曲振动,即根号前取负号,可得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_03.jpg?sign=1739523461-x4utvIDNA334MfzFjsZEFjFp30PCftfc-0-b05d4ba2022ff1634bee8006b5fad5dc)
式中,ν为泊松系数。
与前面的讨论比较可以看出,面内弯曲振动的频率和面外弯曲振动的频率是相当接近的。
2.2.3 圆柱壳体的振动
对于半径为R、长为L的圆柱壳体(见图2.6),取图中的圆柱坐标系(x,θ,z),其中x、θ、z分别表示轴向、切向和径向,R、h、L分别为圆柱壳体的中面半径、轴向长度和厚度,u、v、w分别为轴向、切向和径向的位移。
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_04.jpg?sign=1739523461-fUcXS0D4IJLPmabjjzVMjUwaKjHzGRKd-0-44c1ef7fffb23535db0a08ca9eb2b6b3)
图2.6 圆柱壳体的圆柱坐标
若壳体中曲面上的一点P的轴向、切向、法向位移分别为u、v、w,则中面应变与中面位移之间的关系式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_05.jpg?sign=1739523461-Z6BNBc0VZaip5jiUBQ02frm06d8QTHjv-0-cdfa11aa9dfad530d9162bddddd766bc)
式中,ε为薄膜应变分量;χ为弯曲应变分量。
内力与圆柱壳中面应变的关系式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_06.jpg?sign=1739523461-o9GcNGC8nNg46tAD3WOY9bR9TLMOiwxD-0-fa7c1979a93f7373454b07925d95904a)
式中,N为单位长度薄膜力;M为单位长度力矩。
薄膜刚度K和弯曲刚度D分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_01.jpg?sign=1739523461-1gHUYWf9XffnKPvyTV2YVJaKzkO5gDzF-0-293463fe1978e984097edc1d550b8959)
圆柱壳体的一般性内力动平衡方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_02.jpg?sign=1739523461-19g7UottG3gnkvlVOjOdabvv0ofOrhtH-0-6eea02fb0e891c38d0c09fafafce2448)
式中,剪力表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_03.jpg?sign=1739523461-RbcG580wcWSWclxRfqItpM0n8ITGoz6b-0-ebbf770347fa0caa4261c5f50e5a49d3)
将式(2-87)代入式(2-88),再代入式(2-90),即可得剪力以中面位移分量表示的圆柱壳体的基本微分方程组:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_04.jpg?sign=1739523461-w5CMQXyuRjCaWk2PQWgJg1AYzK8O7eXH-0-a49351e21b111d245c37dcd972a6633d)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_05.jpg?sign=1739523461-RupIxgi6Oqr8gH8UuRvwrEcbBT9sL2X3-0-9951def2c8523837b295afca58fce087)
在电机的振动噪声分析中常见的是两端简支的有限长圆柱壳体(见图2.7)的振动,即圆柱壳体端部边界各点的法向和切向移动是约束的,转动和轴向移动是自由的。对于两端简支的圆柱壳体,其振型边界条件为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_06.jpg?sign=1739523461-G3rP8aanajzBi0LuZmf6ba71saX5yEXg-0-e29ad2a19de0f740b8a67e655c6044a3)
式中,凡带*者均为响应力学量的振型。
设满足全部边界条件[式(2-94)]的圆柱壳体非轴对称振动的位移振型解为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_07.jpg?sign=1739523461-tkoPO3pk15ilQY7zkhFkwsnMBKP64ICm-0-e8738e688d94002ce56742dc6107c8bb)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_08.jpg?sign=1739523461-cGc0RmFxso1aeU87YdCy9KQBKUTl6OJS-0-7080468a211921bb5bcc7f0194244ed2)
图2.7 两端简支的圆柱壳体
由于自由振动的圆柱壳体轴向、切向及径向的面压力均为零,即qx=qθ=qz=0,将上述位移振型解代入圆柱壳体的一般性内力动平衡方程,可得如下齐次线性代数方程组:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_01.jpg?sign=1739523461-PcjgCWQiULkH5wEpinS8LATnBcAPhMyZ-0-04529c829378b941fe3e87f957571e56)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_02.jpg?sign=1739523461-P0b8tP7mX7FxkDT7oCiL5XCmz2DrZpAT-0-871565954c9f761e9681a27da7ad6495)
为求得振型的非零解,必有式(2-96)的系数行列式为零,展开可得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_03.jpg?sign=1739523461-INp5rtixmIiqxL6K8dDmklzkdTO8wScw-0-17c81cab14d3b7d5ae59de7c8bf1e06e)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_04.jpg?sign=1739523461-6TynORBSWDGg6je6BCSvJwnn6wTi9C3K-0-834281caea12f4050309774c37d36d51)
式(2-98)即为两端简支圆柱壳体的频率方程,求得频率系数Ω2的三个根为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_05.jpg?sign=1739523461-VMmgd7SMcHwkN9WGfmrhxG5d8Ed1iSHq-0-301d9d73ad03321e0cac3e7c5c3c1f6b)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_06.jpg?sign=1739523461-qqr8BTu1bugX6UpNq1bb1w0Q2DkTN7S5-0-2fde31c4f7bacdf26279ad2ff11ad358)
从而解得固有频率为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_07.jpg?sign=1739523461-GBpzmvpN0ngwteFNShmURCnjw9sNiaNL-0-54b4dc53299d6b99ff7fdc086d1d1c35)
式中,ωi,mn的下标m、n代表响应振型沿轴向有m个半波,沿周向有n个半波。对应一组(m,n),有三个频率(i=1,2,3),代表U、V、W间比值不同,但均有m个轴向半波和n个周向半波。三个频率中最低一个相应于振型中W为主,其他两个频率值要高过一个量级,相应于U、V为主。对应每一个ωi,mn或Ωi,mn,从式(2-96)中可求得一组振型比,例如取c=1,则由前两个方程可解出
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/54_01.jpg?sign=1739523461-4aKidTw98GkOCV5F9Hlii8wlt5rbx20T-0-a4782a3d801a386b4d11bffe7934111a)
因此与ωi,mn相应的位移振型为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/54_02.jpg?sign=1739523461-x1ddqHjoYD70w2hFOkc7DHrDwqjWFVPn-0-820637b239b1170cccfaa2641c74f208)