大型客机连续下降运行和自动着陆控制技术
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.2.2 着陆引导策略研究现状

鲁棒着陆控制律是实现飞机在复杂环境中着陆的前提,而着陆引导策略是航迹控制精度和飞行安全的重要保障。自动进近着陆过程是一个短暂而复杂的过程,涉及进近、截获、下滑、拉平等多个阶段,容易受到大侧风、紊流、风切变等大气扰动。如何根据着陆阶段和外界环境条件采取相应的控制策略,适时地进行控制律切换,保证飞机的引导精度和飞行安全,是着陆引导的关键。总体来说,着陆引导策略涉及纵向引导、横侧向引导、抗风策略和复飞决策。

飞机的着陆引导依赖于仪表着陆系统的引导信号,根据波束偏差信号生成引导指令,操纵飞机跟踪下滑航迹。2011年,北京航空航天大学的李会杰针对CAT III着陆引导分别设计了纵向控制律和横侧向控制律。纵向控制律包括定高控制、下滑控制和拉平控制,下滑控制时用下滑波束偏差角经PI控制直接生成俯仰角信号;在设计横侧向控制律时充分考虑了侧风作用,采用侧滑法抗侧风策略。虽然通过蒙特卡洛模型仿真验证了该着陆控制律具有较高的精度和鲁棒性,但是并未给出控制律的切换判断条件,未体现出航向截获和下滑截获过程,同时只研究了空中着陆段,对地面滑跑段的控制未加研究。2012年,西北工业大学的常凡凡将波束偏差信号等效为角度信号,根据飞机的运动姿态和飞机与下滑信标台(GS)和航向信标台(LOC)的距离计算出角度信号,在横侧向进行了航向预选控制、航向信标截获控制和航向信标跟踪控制。航向预选控制以偏航角为反馈信号,将飞机的航向控制在便于截获的角度上;航向信标截获控制以波束偏差角信号和航迹方位角信号为控制信号,乘以比例系数,以生成横滚指令;航向信标波束跟踪控制以波束偏差角为控制信号,经PID组合生成横侧向引导指令;纵向引导以垂直速度和纵向偏差角生成期望垂直速度,经PI控制生成俯仰角指令,采用指数拉平轨迹设计。仿真结果表明,跟踪精度满足CAT III A/B着陆的要求,但是该方法仅考虑了侧风作用,对于抗紊流、风切变等扰动的能力未知。此外,飞机模型采用线性化模型,忽略了耦合和参数摄动等影响。2017年,南京航空航天大学的高丽丽建立了航迹倾斜角和俯仰角之间的数学模型,利用波束偏差信号生成航迹倾斜角指令,从而改变俯仰角,实现对下滑航迹的跟踪;整个过程采用PID控制法,未加入扰动因素,也没有验证鲁棒性。

针对拉平段存在较大跟踪误差的问题,北京航空航天大学的郝现伟等人在高度控制的基础上加入前馈校正环节。根据指数轨迹的变化对俯仰角指令进行超前校正,消除了拉平段的轨迹跟踪误差。

针对着陆过程中易受侧风扰动问题,南京航空航天大学的嵇鼎毅等人提出了偏航法、侧滑法和直接侧力法的抗侧风策略,并且进行了对比仿真,得出直接侧力法具有更强的优势,但直接侧力法依靠垂直鸭翼获得侧力,不适用于所有机型。

针对风切变环境中的着陆控制问题,南京航空航天大学的桂远洋等人引入能量高度和风切变危险因子作为安全性指标,采用美国联邦航空管理局提出的三种改出方法,进行风切变的改出对比分析,但是没有给出需要改出的判断条件。

当飞机受到的风切变、紊流等大气干扰过大,超出飞机的控制能力时,必须拉起机头复飞,民航客机的复飞决策是民航客机安全飞行的重要内容。